Cyclic Path Covering Number of Euler Graphs
نویسنده
چکیده
In this paper, we introduce a technique to find the cyclic path covering number of Euler graphs, by using the t-hypohamiltonian graphs. Also a special type of Euler graph in the name n-gon is also being introduced and a general result of cpcn of n-gon is also found. Finally an algorithm to find the cyclic path covering number of any Euler graph is being developed. AMS subject classification: 54A40.
منابع مشابه
Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملMultimatroids I. Coverings by Independent Sets
Multimatroids are combinatorial structures that generalize matroids and arise in the study of Eulerian graphs. We prove, by means of an efficient algorithm, a covering theorem for multimatroids. This theorem extends Edmonds’ covering theorem for matroids. It also generalizes a theorem of Jackson on the Euler tours of a 4-regular graph.
متن کاملEuler paths and ends in automatic and recursive graphs
It is shown that the existence of an Euler path in a recursive graph is complete for the class DΣ 3 of all set differences of two Σ 3 sets. The same problem for highly recursive graphs as well as automatic graphs is shown to be Π 2 -complete. Moreover, the arithmetic level for bounding the number of ends in an automatic/recursive graph as well as computing the number of infinite paths in an aut...
متن کاملExact counting of Euler Tours for Graphs of Bounded Treewidth
In this paper we give a simple polynomial-time algorithm to exactly count the number of Euler Tours (ETs) of any Eulerian graph of bounded treewidth. The problems of counting ETs are known to be ♯P complete for general graphs (Brightwell and Winkler, 2005 [4]). To date, no polynomial-time algorithm for counting Euler tours of any class of graphs is known except for the very special case of seri...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کامل